Utilizzando uno dei più bei formule della matematica, Euler's formula
exp(i*x) = cos(x) + i*sin(x)
,
sostituendo x := n * phi
:
cos(n*phi) = Re(exp(i*n*phi))
sin(n*phi) = Im(exp(i*n*phi))
exp(i*n*phi) = exp(i*phi)^n
Potenza ^n
è moltiplicazioni ripetute n
. Pertanto è possibile calcolare cos(n*phi)
e contemporaneamente sin(n*phi)
ripetendo la moltiplicazione complessa per exp(i*phi)
a partire da (1+i*0)
.
Esempi di codice:
Python:
from math import *
DEG2RAD = pi/180.0 # conversion factor degrees --> radians
phi = 10*DEG2RAD # constant e.g. 10 degrees
c = cos(phi)+1j*sin(phi) # = exp(1j*phi)
h=1+0j
for i in range(1,10):
h = h*c
print "%d %8.3f"%(i,h.real)
o C:
#include <stdio.h>
#include <math.h>
// numer of values to calculate:
#define N 10
// conversion factor degrees --> radians:
#define DEG2RAD (3.14159265/180.0)
// e.g. constant is 10 degrees:
#define PHI (10*DEG2RAD)
typedef struct
{
double re,im;
} complex_t;
int main(int argc, char **argv)
{
complex_t c;
complex_t h[N];
int index;
c.re=cos(PHI);
c.im=sin(PHI);
h[0].re=1.0;
h[0].im=0.0;
for(index=1; index<N; index++)
{
// complex multiplication h[index] = h[index-1] * c;
h[index].re=h[index-1].re*c.re - h[index-1].im*c.im;
h[index].im=h[index-1].re*c.im + h[index-1].im*c.re;
printf("%d: %8.3f\n",index,h[index].re);
}
}
è y * i in radianti o gradi? Se gradi, è possibile utilizzare: cos a = -1 * cos (a - 180). Se i radianti, utilizzare: cos a = -1 * cos (a - pi). È una bella costante che si presterebbe a dover calcolare solo poche iterazioni (cioè ci sono meno di TotalN diversi coseni che devono essere calcolati)? – shoover
y * i è in radianti; il problema è che devo scoprire se posso usare le proprietà periodiche dei coseni. Penso che dovrei controllare se questo intervallo y * [1, totalN] è dentro [0, pi] o se è più grande, e se è più grande dovrei scoprire quali punti sono ripetuti a causa delle proprietà periodiche . – Federico
A meno che y non sia una frazione di pi (come pi/10), allora la periodicità di cos probabilmente non aiuterà. –