Viene visualizzato un errore di segnaposto.TensorFlow: errore PlaceHolder quando si utilizza tf.merge_all_summaries()
Non so cosa significa, perché sto mappando correttamente sul sess.run(..., {_y: y, _X: X})
... che fornisco qui un MWE completamente funzionale che riproduce l'errore:
import tensorflow as tf
import numpy as np
def init_weights(shape):
return tf.Variable(tf.random_normal(shape, stddev=0.01))
class NeuralNet:
def __init__(self, hidden):
self.hidden = hidden
def __del__(self):
self.sess.close()
def fit(self, X, y):
_X = tf.placeholder('float', [None, None])
_y = tf.placeholder('float', [None, 1])
w0 = init_weights([X.shape[1], self.hidden])
b0 = tf.Variable(tf.zeros([self.hidden]))
w1 = init_weights([self.hidden, 1])
b1 = tf.Variable(tf.zeros([1]))
self.sess = tf.Session()
self.sess.run(tf.initialize_all_variables())
h = tf.nn.sigmoid(tf.matmul(_X, w0) + b0)
self.yp = tf.nn.sigmoid(tf.matmul(h, w1) + b1)
C = tf.reduce_mean(tf.square(self.yp - y))
o = tf.train.GradientDescentOptimizer(0.5).minimize(C)
correct = tf.equal(tf.argmax(_y, 1), tf.argmax(self.yp, 1))
accuracy = tf.reduce_mean(tf.cast(correct, "float"))
tf.scalar_summary("accuracy", accuracy)
tf.scalar_summary("loss", C)
merged = tf.merge_all_summaries()
import shutil
shutil.rmtree('logs')
writer = tf.train.SummaryWriter('logs', self.sess.graph_def)
for i in xrange(1000+1):
if i % 100 == 0:
res = self.sess.run([o, merged], feed_dict={_X: X, _y: y})
else:
self.sess.run(o, feed_dict={_X: X, _y: y})
return self
def predict(self, X):
yp = self.sess.run(self.yp, feed_dict={_X: X})
return (yp >= 0.5).astype(int)
X = np.array([ [0,0,1],[0,1,1],[1,0,1],[1,1,1]])
y = np.array([[0],[1],[1],[0]]])
m = NeuralNet(10)
m.fit(X, y)
yp = m.predict(X)[:, 0]
print accuracy_score(y, yp)
L'errore:
I tensorflow/core/common_runtime/local_device.cc:40] Local device intra op parallelism threads: 8
I tensorflow/core/common_runtime/direct_session.cc:58] Direct session inter op parallelism threads: 8
0.847222222222
W tensorflow/core/common_runtime/executor.cc:1076] 0x2340f40 Compute status: Invalid argument: You must feed a value for placeholder tensor 'Placeholder_1' with dtype float
[[Node: Placeholder_1 = Placeholder[dtype=DT_FLOAT, shape=[], _device="/job:localhost/replica:0/task:0/cpu:0"]()]]
W tensorflow/core/common_runtime/executor.cc:1076] 0x2340f40 Compute status: Invalid argument: You must feed a value for placeholder tensor 'Placeholder' with dtype float
[[Node: Placeholder = Placeholder[dtype=DT_FLOAT, shape=[], _device="/job:localhost/replica:0/task:0/cpu:0"]()]]
Traceback (most recent call last):
File "neuralnet.py", line 64, in <module>
m.fit(X[tr], y[tr, np.newaxis])
File "neuralnet.py", line 44, in fit
res = self.sess.run([o, merged], feed_dict={self._X: X, _y: y})
File "/usr/local/lib/python2.7/dist-packages/tensorflow/python/client/session.py", line 368, in run
results = self._do_run(target_list, unique_fetch_targets, feed_dict_string)
File "/usr/local/lib/python2.7/dist-packages/tensorflow/python/client/session.py", line 444, in _do_run
e.code)
tensorflow.python.framework.errors.InvalidArgumentError: You must feed a value for placeholder tensor 'Placeholder_1' with dtype float
[[Node: Placeholder_1 = Placeholder[dtype=DT_FLOAT, shape=[], _device="/job:localhost/replica:0/task:0/cpu:0"]()]]
Caused by op u'Placeholder_1', defined at:
File "neuralnet.py", line 64, in <module>
m.fit(X[tr], y[tr, np.newaxis])
File "neuralnet.py", line 16, in fit
_y = tf.placeholder('float', [None, 1])
File "/usr/local/lib/python2.7/dist-packages/tensorflow/python/ops/array_ops.py", line 673, in placeholder
name=name)
File "/usr/local/lib/python2.7/dist-packages/tensorflow/python/ops/gen_array_ops.py", line 463, in _placeholder
name=name)
File "/usr/local/lib/python2.7/dist-packages/tensorflow/python/ops/op_def_library.py", line 664, in apply_op
op_def=op_def)
File "/usr/local/lib/python2.7/dist-packages/tensorflow/python/framework/ops.py", line 1834, in create_op
original_op=self._default_original_op, op_def=op_def)
File "/usr/local/lib/python2.7/dist-packages/tensorflow/python/framework/ops.py", line 1043, in __init__
self._traceback = _extract_stack()
Se rimuovo lo tf.merge_all_summaries()
o rimuovo merged
da self.sess.run([o, merged], ...)
, quindi funziona correttamente.
Questo è simile a questo post: Error when computing summaries in TensorFlow Tuttavia, non sto usando ipython ...
Eventuali duplicati di [Errore nel calcolo sommario in tensorflow] (http://stackoverflow.com/questions/35114376/error-when-computing-summaries-in-tensorflow) –
@YaroslavBulatov Ho cercato e trovato quel post. Sembra simile Il fatto è che il suo errore è riproducibile solo in IPython sembra. Non sto usando IPython. Sto usando Python "normale" ... –
Il backtrace dice che l'errore si verifica in "sess.run ([o, unito], feed_dict = {self._X: X, _y: y})" ... ma non c'è linea nel codice che hai postato. –