Sto provando a eseguire due attività (separate in 2 kernel) sulla GPU utilizzando Cuda e C++. Come input prendo una matrice NxM (memorizzata in memoria sull'host come array float). Utilizzerò quindi un kernel che esegue alcune operazioni su questa matrice per trasformarlo in una matrice NxMxD. Poi ho un secondo kernel che esegue alcune operazioni su questa matrice 3D (ho appena letto i valori, non devo scrivere valori su di esso).Cuda - copia dalla memoria globale del dispositivo alla memoria texture
Operare nella memoria texture sembra essere molto più veloce per il mio compito quindi la mia domanda è se è possibile copiare i miei dati dalla memoria globale sul dispositivo dopo il kernel 1 e trasferirlo direttamente alla memoria texture per il kernel 2 senza portarlo di nuovo all'ospite?
UPDATE
ho aggiunto un po 'di codice per illustrare il mio problema in maniera migliore.
Ecco i due kernel. Il primo è solo un segnaposto per ora e replica la matrice 2D in 3D.
__global__ void computeFeatureVector(float* imData3D_dev, int imX, int imY, int imZ) {
//calculate each thread global index
int xindex=blockIdx.x*blockDim.x+threadIdx.x;
int yindex=blockIdx.y*blockDim.y+threadIdx.y;
#pragma unroll
for (int z=0; z<imZ; z++) {
imData3D_dev[xindex+yindex*imX + z*imX*imY] = tex2D(texImIp,xindex,yindex);
}
}
Il secondo prenderà questa matrice 3D, ora rappresentata come una trama ed eseguire alcune operazioni su di essa. Vuoto per ora.
__global__ void kernel2(float* resData_dev, int imX) {
//calculate each thread global index
int xindex=blockIdx.x*blockDim.x+threadIdx.x;
int yindex=blockIdx.y*blockDim.y+threadIdx.y;
resData_dev[xindex+yindex*imX] = tex3D(texImIp3D,xindex,yindex, 0);
return;
}
Poi il corpo principale del codice è il seguente:
// declare textures
texture<float,2,cudaReadModeElementType> texImIp;
texture<float,3,cudaReadModeElementType> texImIp3D;
void main_fun() {
// constants
int imX = 1024;
int imY = 768;
int imZ = 16;
// input data
float* imData2D = new float[sizeof(float)*imX*imY];
for(int x=0; x<imX*imY; x++)
imData2D[x] = (float) rand()/RAND_MAX;
//create channel to describe data type
cudaArray* carrayImIp;
cudaChannelFormatDesc channel;
channel=cudaCreateChannelDesc<float>();
//allocate device memory for cuda array
cudaMallocArray(&carrayImIp,&channel,imX,imY);
//copy matrix from host to device memory
cudaMemcpyToArray(carrayImIp,0,0,imData2D,sizeof(float)*imX*imY,cudaMemcpyHostToDevice);
// Set texture properties
texImIp.filterMode=cudaFilterModePoint;
texImIp.addressMode[0]=cudaAddressModeClamp;
texImIp.addressMode[1]=cudaAddressModeClamp;
// bind texture reference with cuda array
cudaBindTextureToArray(texImIp,carrayImIp);
// kernel params
dim3 blocknum;
dim3 blocksize;
blocksize.x=16; blocksize.y=16; blocksize.z=1;
blocknum.x=(int)ceil((float)imX/16);
blocknum.y=(int)ceil((float)imY/16);
// store output here
float* imData3D_dev;
cudaMalloc((void**)&imData3D_dev,sizeof(float)*imX*imY*imZ);
// execute kernel
computeFeatureVector<<<blocknum,blocksize>>>(imData3D_dev, imX, imY, imZ);
//unbind texture reference to free resource
cudaUnbindTexture(texImIp);
// check copied ok
float* imData3D = new float[sizeof(float)*imX*imY*imZ];
cudaMemcpy(imData3D,imData3D_dev,sizeof(float)*imX*imY*imZ,cudaMemcpyDeviceToHost);
cout << " kernel 1" << endl;
for (int x=0; x<10;x++)
cout << imData3D[x] << " ";
cout << endl;
delete [] imData3D;
//
// kernel 2
//
// copy data on device to 3d array
cudaArray* carrayImIp3D;
cudaExtent volumesize;
volumesize = make_cudaExtent(imX, imY, imZ);
cudaMalloc3DArray(&carrayImIp3D,&channel,volumesize);
cudaMemcpyToArray(carrayImIp3D,0,0,imData3D_dev,sizeof(float)*imX*imY*imZ,cudaMemcpyDeviceToDevice);
// texture params and bind
texImIp3D.filterMode=cudaFilterModePoint;
texImIp3D.addressMode[0]=cudaAddressModeClamp;
texImIp3D.addressMode[1]=cudaAddressModeClamp;
texImIp3D.addressMode[2]=cudaAddressModeClamp;
cudaBindTextureToArray(texImIp3D,carrayImIp3D,channel);
// store output here
float* resData_dev;
cudaMalloc((void**)&resData_dev,sizeof(float)*imX*imY);
// kernel 2
kernel2<<<blocknum,blocksize>>>(resData_dev, imX);
cudaUnbindTexture(texImIp3D);
//copy result matrix from device to host memory
float* resData = new float[sizeof(float)*imX*imY];
cudaMemcpy(resData,resData_dev,sizeof(float)*imX*imY,cudaMemcpyDeviceToHost);
// check copied ok
cout << " kernel 2" << endl;
for (int x=0; x<10;x++)
cout << resData[x] << " ";
cout << endl;
delete [] imData2D;
delete [] resData;
cudaFree(imData3D_dev);
cudaFree(resData_dev);
cudaFreeArray(carrayImIp);
cudaFreeArray(carrayImIp3D);
}
sono felice che il primo kernel funziona correttamente, ma la matrice imData3D_dev 3D non sembra essere legato correttamente al texImIp3D tessitura .
RISPOSTA
ho risolto il mio problema con cudaMemcpy3D. Ecco un codice rivisto per la seconda parte della funzione principale. imData3D_dev contiene la matrice 3D nella memoria globale dal primo kernel.
cudaArray* carrayImIp3D;
cudaExtent volumesize;
volumesize = make_cudaExtent(imX, imY, imZ);
cudaMalloc3DArray(&carrayImIp3D,&channel,volumesize);
cudaMemcpy3DParms copyparms={0};
copyparms.extent = volumesize;
copyparms.dstArray = carrayImIp3D;
copyparms.kind = cudaMemcpyDeviceToDevice;
copyparms.srcPtr = make_cudaPitchedPtr((void*)imData3D_dev, sizeof(float)*imX,imX,imY);
cudaMemcpy3D(©parms);
// texture params and bind
texImIp3D.filterMode=cudaFilterModePoint;
texImIp3D.addressMode[0]=cudaAddressModeClamp;
texImIp3D.addressMode[1]=cudaAddressModeClamp;
texImIp3D.addressMode[2]=cudaAddressModeClamp;
cudaBindTextureToArray(texImIp3D,carrayImIp3D,channel);
// store output here
float* resData_dev;
cudaMalloc((void**)&resData_dev,sizeof(float)*imX*imY);
kernel2<<<blocknum,blocksize>>>(resData_dev, imX);
// ... clean up
che risolve il mio problema. – themush