2011-12-16 14 views
17

Esiste un modulo in cui la ricerca non è stata in grado di rilevare ciò che consentirebbe la scrittura di codice simile al seguente? Il motivo per cui vuoi scrivere codice come questo non è importante. Tutto ciò che voglio è un codice che ha una semplice API per generare chiavi di byte pubbliche e private e per codificare e decodificare facilmente i dati con tali chiavi.Crittografia privata/pubblica in Python con libreria standard

import module, os 

method, bits, data = 'RSA', 1024, os.urandom(1024) 
public, private = module.generate_keys(method, bits) 

assert isinstance(public, bytes) and isinstance(private, bytes) 
assert module.decode(module.encode(data, private), public) == data 
assert module.decode(module.encode(data, public), private) == data 

La maggior parte di ciò che sembra essere disponibile richiede il download di un pacchetto e viene eseguito solo su Python 2.x. È anche abbastanza comune trovare librerie che funzionano con file PEM o altri tipi di certificati. Vorrei evitare di dover gestire tali file, generare chiavi pubbliche e private al volo e lavorare rapidamente con i dati in memoria.

+1

non so di una soluzione ideale, ma si può sempre ripiegare su utilizzando il modulo python sottoprocesso per invocare gpg tramite linea di comando – TJD

risposta

30

La crittografia a chiave pubblica non è nella libreria standard. Ci sono alcune librerie di terze parti su PyPi per esso, però:

Se siete interessati alla matematica dietro di esso, Python rende facile sperimentare:

code = pow(msg, 65537, 5551201688147)    # encode using a public key 
plaintext = pow(code, 109182490673, 5551201688147) # decode using a private key 

La generazione di chiavi è un po 'più complicata. Ecco un esempio semplificato di come generare in-memory la chiave utilizzando urandom come origine di entropia. Il codice viene eseguito sia sotto Py2.6 e Py3.x:

import random 

def gen_prime(N=10**8, bases=range(2,20000)): 
    # XXX replace with a more sophisticated algorithm 
    p = 1 
    while any(pow(base, p-1, p) != 1 for base in bases): 
     p = random.SystemRandom().randrange(N) 
    return p 

def multinv(modulus, value): 
    '''Multiplicative inverse in a given modulus 

     >>> multinv(191, 138) 
     18 
     >>> 18 * 138 % 191 
     1 

    ''' 
    # http://en.wikipedia.org/wiki/Extended_Euclidean_algorithm 
    x, lastx = 0, 1 
    a, b = modulus, value 
    while b: 
     a, q, b = b, a // b, a % b 
     x, lastx = lastx - q * x, x 
    result = (1 - lastx * modulus) // value 
    return result + modulus if result < 0 else result 

def keygen(N): 
    '''Generate public and private keys from primes up to N. 

     >>> pubkey, privkey = keygen(2**64) 
     >>> msg = 123456789
     >>> coded = pow(msg, 65537, pubkey) 
     >>> plain = pow(coded, privkey, pubkey) 
     >>> assert msg == plain 

    ''' 
    # http://en.wikipedia.org/wiki/RSA 
    prime1 = gen_prime(N) 
    prime2 = gen_prime(N) 
    totient = (prime1 - 1) * (prime2 - 1) 
    return prime1 * prime2, multinv(totient, 65537) 
+1

Sapete se una di queste supporto librerie sia una semplice API come quella mostrata sopra che gira su Python 3.x? –

+3

Il collegamento RSA Python ha un codice Python puro che include gran parte di ciò che stai cercando. Probabilmente dovrai adattarlo un po 'per far corrispondere esattamente l'API che stai cercando. Le ricette APSN, gli esempi di pow e PyCrypto funzionano bene su Python 3. –

+0

Ciao @RaymondHettinger. Volevo implementare questo algo in java come hai descritto qui. Ma vedo che ciò che Python fa facilmente con 'pow (code, pub, pri)' è quasi impossibile da calcolare con java. Penso che mi manchi sth. Mi suggeriresti sth? (anche no, grazie per la risposta :)) –

2

Ecco un altro esempio

import random 


# RSA Algorithm 



ops = raw_input('Would you like a list of prime numbers to choose from (y/n)? ') 
op = ops.upper() 

if op == 'Y': 
    print """\n 2  3  5  7  11  13  17  19  23  29 
31  37  41  43  47  53  59  61  67  71 
73  79  83  89  97 101 103 107 109 113 
127 131 137 139 149 151 157 163 167 173 
179 181 191 193 197 199 211 223 227 229 
233 239 241 251 257 263 269 271 277 281 
283 293 307 311 313 317 331 337 347 349 
353 359 367 373 379 383 389 397 401 409 
419 421 431 433 439 443 449 457 461 463 
467 479 487 491 499 503 509 521 523 541 
547 557 563 569 571 577 587 593 599 \n""" 
    rsa() 
else: 
    print "\n" 
    rsa() 

def rsa(): 
    # Choose two prime numbers p and q 
    p = raw_input('Choose a p: ') 
    p = int(p) 

while isPrime(p) == False: 
    print "Please ensure p is prime" 
    p = raw_input('Choose a p: ') 
    p = int(p) 

q = raw_input('Choose a q: ') 
q = int(q) 

while isPrime(q) == False or p==q: 
    print "Please ensure q is prime and NOT the same value as p" 
    q = raw_input('Choose a q: ') 
    q = int(q) 

# Compute n = pq 
n = p * q 

# Compute the phi of n 
phi = (p-1) * (q-1) 

# Choose an integer e such that e and phi(n) are coprime 
e = random.randrange(1,phi) 

# Use Euclid's Algorithm to verify that e and phi(n) are comprime 
g = euclid(e,phi) 
while(g!=1): 
    e = random.randrange(1,phi) 
    g = euclid(e,phi) 

# Use Extended Euclid's Algorithm 
d = extended_euclid(e,phi) 

# Public and Private Key have been generated 
public_key=(e,n) 
private_key=(d,n) 
print "Public Key [E,N]: ", public_key 
print "Private Key [D,N]: ", private_key 

# Enter plain text to be encrypted using the Public Key 
sentence = raw_input('Enter plain text: ') 
letters = list(sentence) 

cipher = [] 
num = "" 

# Encrypt the plain text 
for i in range(0,len(letters)): 
    print "Value of ", letters[i], " is ", character[letters[i]] 

    c = (character[letters[i]]**e)%n 
    cipher += [c] 
    num += str(c) 
print "Cipher Text is: ", num 

plain = [] 
sentence = "" 

# Decrypt the cipher text  
for j in range(0,len(cipher)): 

    p = (cipher[j]**d)%n 

    for key in character.keys(): 
     if character[key]==p: 
      plain += [key] 
      sentence += key 
      break 
print "Plain Text is: ", sentence 

# Euclid's Algorithm 
def euclid(a, b): 
    if b==0: 
    return a 
else: 
    return euclid(b, a % b) 

# Euclid's Extended Algorithm 
def extended_euclid(e,phi): 
    d=0 
    x1=0 
    x2=1 
    y1=1 
    orig_phi = phi 
    tempPhi = phi 

while (e>0): 
    temp1 = int(tempPhi/e) 
    temp2 = tempPhi - temp1 * e 
    tempPhi = e 
    e = temp2 

    x = x2- temp1* x1 
    y = d - temp1 * y1 

    x2 = x1 
    x1 = x 
    d = y1 
    y1 = y 

    if tempPhi == 1: 
     d += phi 
     break 
return d 

# Checks if n is a prime number 
def isPrime(n): 
    for i in range(2,n): 
    if n%i == 0: 
     return False 
return True 

character = {"A":1,"B":2,"C":3,"D":4,"E":5,"F":6,"G":7,"H":8,"I":9,"J":10, 
    "K":11,"L":12,"M":13,"N":14,"O":15,"P":16,"Q":17,"R":18,"S":19, 
    "T":20,"U":21,"V":22,"W":23,"X":24,"Y":25,"Z":26,"a":27,"b":28, 
    "c":29,"d":30,"e":31,"f":32,"g":33,"h":34,"i":35,"j":36,"k":37, 
    "l":38,"m":39,"n":40,"o":41,"p":42,"q":43,"r":44,"s":45,"t":46, 
    "u":47,"v":48,"w":49,"x":50,"y":51,"z":52, " ":53, ".":54, ",":55, 
    "?":56,"/":57,"!":58,"(":59,")":60,"$":61,":":62,";":63,"'":64,"@":65, 
    "#":66,"%":67,"^":68,"&":69,"*":70,"+":71,"-":72,"_":73,"=":74}