Stavo cercando di utilizzare la normalizzazione batch per addestrare le reti neurali usando TensorFlow ma non mi è chiaro come utilizzare the official layer implementation of Batch Normalization (nota che è diverso da quello dello API).Come si usa il livello di normalizzazione batch in TensorFlow?
Dopo alcuni scavi dolorosi sul loro github issues sembra che uno abbia bisogno di un tf.cond
per usarlo correttamente e anche un flag 'resue = True' in modo che le variabili di spostamento e scala del BN siano riutilizzate correttamente. Dopo averlo capito, ho fornito una piccola descrizione di come credo sia il modo giusto di usarlo here.
Ora ho scritto un breve script per testarlo (solo un singolo livello e un ReLu, difficile renderlo più piccolo di questo). Tuttavia, non sono sicuro al 100% come testarlo. In questo momento il mio codice funziona senza messaggi di errore, ma restituisce NaNs
in modo imprevisto. Ciò mi fa abbassare la fiducia che il codice che ho dato nell'altro post possa essere corretto. O forse la rete che ho è strana. In ogni caso, qualcuno sa che cosa non va? Ecco il codice:
import tensorflow as tf
# download and install the MNIST data automatically
from tensorflow.examples.tutorials.mnist import input_data
from tensorflow.contrib.layers.python.layers import batch_norm as batch_norm
def batch_norm_layer(x,train_phase,scope_bn):
bn_train = batch_norm(x, decay=0.999, center=True, scale=True,
is_training=True,
reuse=None, # is this right?
trainable=True,
scope=scope_bn)
bn_inference = batch_norm(x, decay=0.999, center=True, scale=True,
is_training=False,
reuse=True, # is this right?
trainable=True,
scope=scope_bn)
z = tf.cond(train_phase, lambda: bn_train, lambda: bn_inference)
return z
def get_NN_layer(x, input_dim, output_dim, scope, train_phase):
with tf.name_scope(scope+'vars'):
W = tf.Variable(tf.truncated_normal(shape=[input_dim, output_dim], mean=0.0, stddev=0.1))
b = tf.Variable(tf.constant(0.1, shape=[output_dim]))
with tf.name_scope(scope+'Z'):
z = tf.matmul(x,W) + b
with tf.name_scope(scope+'BN'):
if train_phase is not None:
z = batch_norm_layer(z,train_phase,scope+'BN_unit')
with tf.name_scope(scope+'A'):
a = tf.nn.relu(z) # (M x D1) = (M x D) * (D x D1)
return a
mnist = input_data.read_data_sets("MNIST_data/", one_hot=True)
# placeholder for data
x = tf.placeholder(tf.float32, [None, 784])
# placeholder that turns BN during training or off during inference
train_phase = tf.placeholder(tf.bool, name='phase_train')
# variables for parameters
hiden_units = 25
layer1 = get_NN_layer(x, input_dim=784, output_dim=hiden_units, scope='layer1', train_phase=train_phase)
# create model
W_final = tf.Variable(tf.truncated_normal(shape=[hiden_units, 10], mean=0.0, stddev=0.1))
b_final = tf.Variable(tf.constant(0.1, shape=[10]))
y = tf.nn.softmax(tf.matmul(layer1, W_final) + b_final)
### training
y_ = tf.placeholder(tf.float32, [None, 10])
cross_entropy = tf.reduce_mean(-tf.reduce_sum(y_ * tf.log(y), reduction_indices=[1]))
train_step = tf.train.GradientDescentOptimizer(0.5).minimize(cross_entropy)
with tf.Session() as sess:
sess.run(tf.initialize_all_variables())
steps = 3000
for iter_step in xrange(steps):
#feed_dict_batch = get_batch_feed(X_train, Y_train, M, phase_train)
batch_xs, batch_ys = mnist.train.next_batch(100)
# Collect model statistics
if iter_step%1000 == 0:
batch_xstrain, batch_xstrain = batch_xs, batch_ys #simualtes train data
batch_xcv, batch_ycv = mnist.test.next_batch(5000) #simualtes CV data
batch_xtest, batch_ytest = mnist.test.next_batch(5000) #simualtes test data
# do inference
train_error = sess.run(fetches=cross_entropy, feed_dict={x: batch_xs, y_:batch_ys, train_phase: False})
cv_error = sess.run(fetches=cross_entropy, feed_dict={x: batch_xcv, y_:batch_ycv, train_phase: False})
test_error = sess.run(fetches=cross_entropy, feed_dict={x: batch_xtest, y_:batch_ytest, train_phase: False})
def do_stuff_with_errors(*args):
print args
do_stuff_with_errors(train_error, cv_error, test_error)
# Run Train Step
sess.run(fetches=train_step, feed_dict={x: batch_xs, y_:batch_ys, train_phase: True})
# list of booleans indicating correct predictions
correct_prediction = tf.equal(tf.argmax(y,1), tf.argmax(y_,1))
# accuracy
accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))
print(sess.run(accuracy, feed_dict={x: mnist.test.images, y_: mnist.test.labels, train_phase: False}))
quando l'eseguo ottengo:
Extracting MNIST_data/train-images-idx3-ubyte.gz
Extracting MNIST_data/train-labels-idx1-ubyte.gz
Extracting MNIST_data/t10k-images-idx3-ubyte.gz
Extracting MNIST_data/t10k-labels-idx1-ubyte.gz
(2.3474066, 2.3498712, 2.3461707)
(0.49414295, 0.88536006, 0.91152304)
(0.51632041, 0.393666, nan)
0.9296
ha usato per essere tutti gli ultimi erano nan e ora solo alcuni di loro. Va tutto bene o sono paranoico?
Controllare la mia risposta in https://stackoverflow.com/questions/33949786/how-could-i -utilizzare-batch-normalizzazione-in-tensorflow/38325288 # 38325288. Ho anche avuto un NaN in funzione di perdita sporadicamente quando inizialmente l'ho provato e c'erano 2 problemi che ho affrontato: 1) Tasso di apprendimento ridotto 2) Garantito che la normalizzazione del lotto sia eseguita per OGNI strato. Significato I lotto normalizza l'input al livello nascosto e l'output del livello nascosto. –
Se uso qualcosa come: con tf.name_scope ('batch_norm'), è ancora necessario passare la variabile scope alla funzione batch_norm? – resistancefm