Un'altra opzione:
data %>%
mutate(sum = rowSums(., na.rm = TRUE))
Benchmark
library(microbenchmark)
mbm <- microbenchmark(
steven = data %>% mutate(sum = rowSums(., na.rm = TRUE)),
lyz = data %>% rowwise() %>% mutate(sum = sum(a, b, c, na.rm=TRUE)),
nar = apply(data, 1, sum, na.rm = TRUE),
akrun = data %>% mutate_each(funs(replace(., which(is.na(.)), 0))) %>% mutate(sum=a+b+c),
frank = data %>% mutate(sum = Reduce(function(x,y) x + replace(y, is.na(y), 0), .,
init=rep(0, n()))),
times = 10)
#Unit: milliseconds
# expr min lq mean median uq max neval cld
# steven 9.493812 9.558736 18.31476 10.10280 22.55230 65.15325 10 a
# lyz 6791.690570 6836.243782 6978.29684 6915.16098 7138.67733 7321.61117 10 c
# nar 702.537055 723.256808 799.79996 805.71028 849.43815 909.36413 10 b
# akrun 11.372550 11.388473 28.49560 11.44698 20.21214 155.23165 10 a
# frank 20.206747 20.695986 32.69899 21.12998 25.11939 118.14779 10 a
fonte
2015-11-19 14:44:20
è meraviglioso! Grazie mille – ckluss
Siete i benvenuti @ckluss. Ho fornito il modo più "dplyr -ico" (se posso dire questo, nel senso che sta usando dplyr in un modo tradizionale come per le esercitazioni) di farlo. Tuttavia, l'uso di altre funzioni di base (da solo o in combinazione con dplyr) è decisamente più efficiente del mio. Le risposte di StevenBeaupre e Akrun sono più efficienti quindi probabilmente staresti meglio con quelle se la velocità è importante per te. – LyzandeR
@LyzandeR Immagino che l'OP abbia voluto il modo 'dplyr'ish. Quindi, non preoccuparti dell'efficienza. – akrun