Ecco un modo per implementare le due funzioni.
import scipy.optimize
def xnpv(rate, values, dates):
'''Equivalent of Excel's XNPV function.
>>> from datetime import date
>>> dates = [date(2010, 12, 29), date(2012, 1, 25), date(2012, 3, 8)]
>>> values = [-10000, 20, 10100]
>>> xnpv(0.1, values, dates)
-966.4345...
'''
if rate <= -1.0:
return float('inf')
d0 = dates[0] # or min(dates)
return sum([ vi/(1.0 + rate)**((di - d0).days/365.0) for vi, di in zip(values, dates)])
def xirr(values, dates):
'''Equivalent of Excel's XIRR function.
>>> from datetime import date
>>> dates = [date(2010, 12, 29), date(2012, 1, 25), date(2012, 3, 8)]
>>> values = [-10000, 20, 10100]
>>> xirr(values, dates)
0.0100612...
'''
try:
return scipy.optimize.newton(lambda r: xnpv(r, values, dates), 0.0)
except RuntimeError: # Failed to converge?
return scipy.optimize.brentq(lambda r: xnpv(r, values, dates), -1.0, 1e10)
fonte
2015-10-21 13:04:37
ATTENZIONE: Se si utilizzano questi valori di 'step' e' guess', sarà impossibile ottenere un irr in '(-100%, -95%)' –