Costruire sulla bella risposta di BerndGit, aggiungo una versione leggermente modificata che permette di visualizzare altri contenuti insieme con le piastrelle (con mappa di base). Btw ho incontrato una libreria dedicata, geotiler (http://wrobell.it-zone.org/geotiler/intro.html), ma richiede Python 3.
from mpl_toolkits.basemap import Basemap
import matplotlib.pyplot as plt
import numpy as np
import math
import urllib2
import StringIO
from PIL import Image
def deg2num(lat_deg, lon_deg, zoom):
lat_rad = math.radians(lat_deg)
n = 2.0 ** zoom
xtile = int((lon_deg + 180.0)/360.0 * n)
ytile = int((1.0 - math.log(math.tan(lat_rad) + (1/math.cos(lat_rad)))/math.pi)/2.0 * n)
return (xtile, ytile)
def num2deg(xtile, ytile, zoom):
"""
http://wiki.openstreetmap.org/wiki/Slippy_map_tilenames
This returns the NW-corner of the square.
Use the function with xtile+1 and/or ytile+1 to get the other corners.
With xtile+0.5 & ytile+0.5 it will return the center of the tile.
"""
n = 2.0 ** zoom
lon_deg = xtile/n * 360.0 - 180.0
lat_rad = math.atan(math.sinh(math.pi * (1 - 2 * ytile/n)))
lat_deg = math.degrees(lat_rad)
return (lat_deg, lon_deg)
def getImageCluster(lat_deg, lon_deg, delta_lat, delta_long, zoom):
smurl = r"http://a.tile.openstreetmap.org/{0}/{1}/{2}.png"
xmin, ymax = deg2num(lat_deg, lon_deg, zoom)
xmax, ymin = deg2num(lat_deg + delta_lat, lon_deg + delta_long, zoom)
bbox_ul = num2deg(xmin, ymin, zoom)
bbox_ll = num2deg(xmin, ymax + 1, zoom)
#print bbox_ul, bbox_ll
bbox_ur = num2deg(xmax + 1, ymin, zoom)
bbox_lr = num2deg(xmax + 1, ymax +1, zoom)
#print bbox_ur, bbox_lr
Cluster = Image.new('RGB',((xmax-xmin+1)*256-1,(ymax-ymin+1)*256-1))
for xtile in range(xmin, xmax+1):
for ytile in range(ymin, ymax+1):
try:
imgurl=smurl.format(zoom, xtile, ytile)
print("Opening: " + imgurl)
imgstr = urllib2.urlopen(imgurl).read()
tile = Image.open(StringIO.StringIO(imgstr))
Cluster.paste(tile, box=((xtile-xmin)*255 , (ytile-ymin)*255))
except:
print("Couldn't download image")
tile = None
return Cluster, [bbox_ll[1], bbox_ll[0], bbox_ur[1], bbox_ur[0]]
if __name__ == '__main__':
lat_deg, lon_deg, delta_lat, delta_long, zoom = 45.720-0.04/2, 4.210-0.08/2, 0.04, 0.08, 14
a, bbox = getImageCluster(lat_deg, lon_deg, delta_lat, delta_long, zoom)
fig = plt.figure(figsize=(10, 10))
ax = plt.subplot(111)
m = Basemap(
llcrnrlon=bbox[0], llcrnrlat=bbox[1],
urcrnrlon=bbox[2], urcrnrlat=bbox[3],
projection='merc', ax=ax
)
# list of points to display (long, lat)
ls_points = [m(x,y) for x,y in [(4.228, 45.722), (4.219, 45.742), (4.221, 45.737)]]
m.imshow(a, interpolation='lanczos', origin='upper')
ax.scatter([point[0] for point in ls_points],
[point[1] for point in ls_points],
alpha = 0.9)
plt.show()
Non mescolare il rendering e la visualizzazione. Vuoi solo visualizzare già renderizzati [tiles] (https://wiki.openstreetmap.org/wiki/Tiles). [Rendering] (https://wiki.openstreetmap.org/wiki/Rendering) le tue tessere sono molto più complesse :) – scai
Ok. Grazie. Questo era esattamente il mio punto mancante. – BerndGit