Sto provando a creare una trama di serie temporali con Seaborn da un dataframe con più serie.Gli orari di Seaborn si basano su più serie
da questo post: seaborn time series from pandas dataframe
Mi sembra di capire che tsplot non è andare a lavorare come è pensato per tracciare incertezza.
Quindi esiste un altro metodo Seaborn destinato ai grafici a linee con più serie?
mio dataframe si presenta così:
print(df.info())
print(df.describe())
print(df.values)
print(df.index)
uscita:
<class 'pandas.core.frame.DataFrame'>
DatetimeIndex: 253 entries, 2013-01-03 to 2014-01-03
Data columns (total 5 columns):
Equity(24 [AAPL]) 253 non-null float64
Equity(3766 [IBM]) 253 non-null float64
Equity(5061 [MSFT]) 253 non-null float64
Equity(6683 [SBUX]) 253 non-null float64
Equity(8554 [SPY]) 253 non-null float64
dtypes: float64(5)
memory usage: 11.9 KB
None
Equity(24 [AAPL]) Equity(3766 [IBM]) Equity(5061 [MSFT]) \
count 253.000000 253.000000 253.000000
mean 67.560593 194.075383 32.547436
std 6.435356 11.175226 3.457613
min 55.811000 172.820000 26.480000
25% 62.538000 184.690000 28.680000
50% 65.877000 193.880000 33.030000
75% 72.299000 203.490000 34.990000
max 81.463000 215.780000 38.970000
Equity(6683 [SBUX]) Equity(8554 [SPY])
count 253.000000 253.000000
mean 33.773277 164.690180
std 4.597291 10.038221
min 26.610000 145.540000
25% 29.085000 156.130000
50% 33.650000 165.310000
75% 38.280000 170.310000
max 40.995000 184.560000
[[ 77.484 195.24 27.28 27.685 145.77 ]
[ 75.289 193.989 26.76 27.85 146.38 ]
[ 74.854 193.2 26.71 27.875 145.965]
...,
[ 80.167 187.51 37.43 39.195 184.56 ]
[ 79.034 185.52 37.145 38.595 182.95 ]
[ 77.284 186.66 36.92 38.475 182.8 ]]
DatetimeIndex(['2013-01-03', '2013-01-04', '2013-01-07', '2013-01-08',
'2013-01-09', '2013-01-10', '2013-01-11', '2013-01-14',
'2013-01-15', '2013-01-16',
...
'2013-12-19', '2013-12-20', '2013-12-23', '2013-12-24',
'2013-12-26', '2013-12-27', '2013-12-30', '2013-12-31',
'2014-01-02', '2014-01-03'],
dtype='datetime64[ns]', length=253, freq=None, tz='UTC')
questo funziona (ma voglio mettere le mani sporche di Seaborn):
df.plot()
uscita:
Grazie per il vostro tempo!
Update1:
df.to_dict()
restituito: https://gist.github.com/anonymous/2bdc1ce0f9d0b6ccd6675ab4f7313a5f
Update2:
Utilizzando il codice di esempio @knagaev, ho ristretto la scelta a questa differenza:
corrente dataframe (uscita print(current_df)
):
Equity(24 [AAPL]) Equity(3766 [IBM]) \
2013-01-03 00:00:00+00:00 77.484 195.2400
2013-01-04 00:00:00+00:00 75.289 193.9890
2013-01-07 00:00:00+00:00 74.854 193.2000
2013-01-08 00:00:00+00:00 75.029 192.8200
2013-01-09 00:00:00+00:00 73.873 192.3800
dataframe desiderato (uscita di print(desired_df)
):
Date Company Kind Price
0 2014-01-02 IBM Open 187.210007
1 2014-01-02 IBM High 187.399994
2 2014-01-02 IBM Low 185.199997
3 2014-01-02 IBM Close 185.529999
4 2014-01-02 IBM Volume 4546500.000000
5 2014-01-02 IBM Adj Close 171.971090
6 2014-01-02 MSFT Open 37.349998
7 2014-01-02 MSFT High 37.400002
8 2014-01-02 MSFT Low 37.099998
9 2014-01-02 MSFT Close 37.160000
10 2014-01-02 MSFT Volume 30632200.000000
11 2014-01-02 MSFT Adj Close 34.960000
12 2014-01-02 ORCL Open 37.779999
13 2014-01-02 ORCL High 38.029999
14 2014-01-02 ORCL Low 37.549999
15 2014-01-02 ORCL Close 37.840000
16 2014-01-02 ORCL Volume 18162100.000000
Qual è il modo migliore di riorganizzare il current_df
-desired_df
?
Update 3: finalmente ho capito di lavoro da l'aiuto di @knagaev:
ho dovuto aggiungere una colonna fittizia così come l'indice di finezza:
df['Datetime'] = df.index
melted_df = pd.melt(df, id_vars='Datetime', var_name='Security', value_name='Price')
melted_df['Dummy'] = 0
sns.tsplot(melted_df, time='Datetime', unit='Dummy', condition='Security', value='Price', ax=ax)
'seaborn' generalmente non duplicare funzionalità che è un lavaggio in matplotlib o panda. C'è qualcosa di specifico che stai cercando di fare? – mwaskom
puoi pubblicare l'output di 'df.to_csv()' o 'df.to_dict()' - così potremmo ricreare facilmente il tuo DF? – MaxU
@MaxU Ho aggiornato la domanda con i dati. Grazie per dare un'occhiata. –