2016-02-03 22 views
12

I'm running the following code in an ipython session:Perché len (<a list object>) so slow?

# This call is slow, but that is expected. (It loads 3 GB of data.) 
In [3]: arc, arc_sub, upls, go = foo_mod.ready_set() 

# This call is also slow, as `upls` is huge. 
In [4]: upls = list(upls) 

# This call is slow in meatspace, but `%timeit` doesn't notice! 
In [5]: %timeit -n1 -r1 len(upls) 
1 loops, best of 1: 954 ns per loop 

%timeit is straight-up lying here. With or without the %timeit, the command takes upwards of 10s to actually run. Only the first time, however; subsequent calls to len are quick.

Even time.time() sings a similar tune:

In [5]: import time 

In [6]: s = time.time(); len_ = len(upls); e = time.time() 

In [7]: e - s 
Out[7]: 7.104873657226562e-05 

But it took seconds in the real world for In [6] to actually complete. I just don't seem to be able to capture where the actual time is being spent!

There's nothing terribly unusual about the list, aside from it's huge: it's a real list; it holds ~¼ billion bson.ObjectId objects. (Prior to the list() call, it's a set object; that call is also slow, but that makes sense; list(<set instance>) is O(n), and my set is huge.)

Edit re GC

If I run gc.set_debug(gc.DEBUG_STATS) just prior to ready_set, which itself is a slow call, I see tons of GC cycles. This is expected. gen3 grows:

gc: objects in each generation: 702 701 3289802 
gc: done, 0.0000s elapsed. 
gc: collecting generation 0... 
gc: objects in each generation: 702 1402 3289802 
gc: done, 0.0000s elapsed. 
gc: collecting generation 0... 
gc: objects in each generation: 702 2103 3289802 

Unfortunately the console outputs make this runtime of this impossibly slow. If I instead delay the gc.set_debug call until just after ready_set, I don't see any GC cycles, but gc.get_count() claims the generations are tiny:

In [6]: gc.get_count() 
Out[6]: (43, 1, 193) 

In [7]: len(upls) 
Out[7]: 125636395 

(but why/how is get_count less objects than what's in the list?; they're definitely all unique, since they just went through a set…) The fact that involving gc in the code makes len speedy leads me to believe I'm paused for a collect-the-world.

(Versions, just in case:

Python 2.7.6 (default, Mar 22 2014, 22:59:56) 
IPython 3.2.0 -- An enhanced Interactive Python. 

)

+4

Questo è strano. Succede la stessa cosa nel normale interprete interattivo? Gli elenchi – user2357112

+3

conoscono le loro dimensioni. una volta in una lista, len (thelist) è O (1) –

+0

@ChadS. Perché le liste conoscano le loro dimensioni, devono calcolarle a un certo punto. Penso che il caching avvenga in prima chiamata a 'len()'. – freakish

risposta

2

I will summarize the comments to your question to the answer.

As everyone said (and you pointed it out), Python's list object knows its size and it returns just the stored number:

static Py_ssize_t 
list_length(PyListObject *a) 
{ 
    return Py_SIZE(a); 
} 

Dove Py_SIZEis defined:

Py_SIZE (o)

Questa macro viene utilizzata per accedere al membro ob_size di un oggetto Python Si espande.: (((PyVarObject*)(o))->ob_size)

Così posso c escludere non dovrebbe fare alcun calcolo. L'unico sospetto è l'oggetto che stai cercando di convertire in elenco. Ma se giuri che è davvero list senza alcun oggetto falso simulare il suo metodo con alcuni calcoli pigri - non lo è.

Quindi presumo che tutti i metodi timeit stiano davvero mostrando il tempo esatto trascorso per chiamare la funzione len.

E l'unico processo di spreco di tempo è .. Garbage Collector. Alla fine delle tue misurazioni, scopre che nessuno usa una porzione così grande di dati e inizia a liberare la memoria. Certo, ci vogliono alcuni secondi.