Ho lavorato alla creazione di una rete neurale usando pybrain e, dopo averlo addestrato alla propagazione per qualche motivo, non riesce a formare la mia rete. Qualsiasi insieme di dati che uso con più di due classi nella dimensione esterna sommerà tutte le mie osservazioni in un'unica categoria. Qualcuno sa perché questo sta accadendo? Codice e alcuni output sono sotto.Pybrain Neural Network non si allena correttamente
import scipy
import numpy
from pybrain.datasets import ClassificationDataSet
from pybrain.utilities import percentError
from pybrain.tools.shortcuts import buildNetwork
from pybrain.supervised.trainers import BackpropTrainer
from pybrain.structure.modules import SoftmaxLayer
from sklearn.metrics import precision_score,recall_score,confusion_matrix
def makeDataset(CSVfile,ClassFile):
#import the features to data, and their classes to dataClasses
data=numpy.genfromtxt(CSVfile,delimiter=",")
classes=numpy.genfromtxt(ClassFile,delimiter=",")
print("Building the dataset from CSV files")
#Initialize an empty Pybrain dataset, and populate it
alldata=ClassificationDataSet(len(data[0]),1,nb_classes=3)
for count in range(len((classes))):
alldata.addSample(data[count],[classes[count]])
return alldata
def makeNeuralNet(alldata,trainingPercent=.3,hiddenNeurons=5,trainingIterations=20):
#Divide the data set into training and non-training data
testData, trainData = alldata.splitWithProportion(trainingPercent)
testData._convertToOneOfMany()
trainData._convertToOneOfMany()
#Then build the network, and using backwards propogation to train it
network = buildNetwork(trainData.indim, hiddenNeurons, trainData.outdim, outclass=SoftmaxLayer)
trainer = BackpropTrainer(network, dataset=trainData, momentum=0.1, verbose=True, weightdecay=0.01)
for i in range(trainingIterations):
print("Training Epoch #"+str(i))
trainer.trainEpochs(1)
return [network,trainer]
def checkNeuralNet(trainer,alldata):
predictedVals=trainer.testOnClassData(alldata)
actualVals=list(alldata['target'])
## for row in alldata['target']:
## row=list(row)
## index=row.index(1)
## actualVals+=[index]
print("-----------------------------")
print("-----------------------------")
print("The precision is "+str(precision_score(actualVals,predictedVals)))
print("The recall is "+str(recall_score(actualVals,predictedVals)))
print("The confusion matrix is as shown below:")
print(confusion_matrix(actualVals,predictedVals))
CSVfile="/home/ubuntu/test.csv"
ClassFile="/home/ubuntu/test_Classes.csv"
#Build our dataset
alldata=makeDataset(CSVfile,ClassFile)
#Build and train the network
net=makeNeuralNet(alldata,trainingPercent=.7,hiddenNeurons=20,trainingIterations=20)
network=net[0]
trainer=net[1]
#Check it's strength
checkNeuralNet(trainer,alldata)
L'ultima epoca della formazione è .09 errore, come mostrato nell'output di seguito:
Training Epoch #19
Total error: 0.0968444196605
Eppure quando vado a stampare la matrice di confusione, la precisione, e il richiamo, ho la seguendo così come questo errore strano:
UserWarning: The sum of true positives and false positives are equal to zero for some labels. Precision is ill defined for those labels [1 2]. The precision and recall are equal to zero for some labels. fbeta_score is ill defined for those labels [1 2].
average=average)
The precision is 0.316635552252
UserWarning: The sum of true positives and false positives are equal to zero for some labels. Precision is ill defined for those labels [1 2]. The precision and recall are equal to zero for some labels. fbeta_score is ill defined for those labels [1 2].
average=average)
The recall is 0.562703787309
The confusion matrix is as shown below:
[[4487 0 0]
[ 987 0 0]
[2500 0 0]]