Si può fare qualcosa di simile:
val df = Seq(
(1,12345678,"this is a test"),
(1,23456789, "another test"),
(2,2345678,"2nd test"),
(2,1234567, "2nd another test")
).toDF("id","timestamp","data")
+---+---------+----------------+
| id|timestamp| data|
+---+---------+----------------+
| 1| 12345678| this is a test|
| 1| 23456789| another test|
| 2| 2345678| 2nd test|
| 2| 1234567|2nd another test|
+---+---------+----------------+
df.join(
df.groupBy($"id").agg(max($"timestamp") as "r_timestamp").withColumnRenamed("id", "r_id"),
$"id" === $"r_id" && $"timestamp" === $"r_timestamp"
).drop("r_id").drop("r_timestamp").show
+---+---------+------------+
| id|timestamp| data|
+---+---------+------------+
| 1| 23456789|another test|
| 2| 2345678| 2nd test|
+---+---------+------------+
Se vi aspettate ci potrebbe essere un ripetuto timestamp
per id
(vedi commenti qui sotto), si potrebbe fare questo:
df.dropDuplicates(Seq("id", "timestamp")).join(
df.groupBy($"id").agg(max($"timestamp") as "r_timestamp").withColumnRenamed("id", "r_id"),
$"id" === $"r_id" && $"timestamp" === $"r_timestamp"
).drop("r_id").drop("r_timestamp").show
fonte
2016-04-14 13:54:35
Qual è la scopo di 'dataMap'? – zero323
In realtà dovrebbe essere 'data.map (lambda x: (x.id, x))' (o 'keyBy'). Lasciamolo solo aggiustarlo – zero323
Assolutamente corretto, bella cattura – David