Questo può essere un po 'eccessivo, ma il modo corretto per trovare il tuo punto di intersezione, una volta che avete dividere la curva in blocchi, è quello di vedere se qualsiasi segmento dal primo pezzo si interseca con qualsiasi segmento dal secondo pezzo.
ho intenzione di farmi alcuni dati semplici, un pezzo di un prolate cycloid, e sto andando a trovare luoghi in cui la coordinata y lanci di aumentare a diminuire in modo simile a here:
a, b = 1, 2
phi = np.linspace(3, 10, 100)
x = a*phi - b*np.sin(phi)
y = a - b*np.cos(phi)
y_growth_flips = np.where(np.diff(np.diff(y) > 0))[0] + 1
plt.plot(x, y, 'rx')
plt.plot(x[y_growth_flips], y[y_growth_flips], 'bo')
plt.axis([2, 12, -1.5, 3.5])
plt.show()
![enter image description here](https://i.stack.imgur.com/3vUrI.png)
Se si dispone di due segmenti, uno che va dal punto a P1
e un altro che va dal punto Q0
a Q1
, è possibile trovare il loro punto di intersezione risolvendo l'equazione vettoriale P0 + s*(P1-P0) = Q0 + t*(Q1-Q0)
e i due segmenti si intersecano effettivamente se entrambi i numeri s
e t
sono in [0, 1]
.Provare questo per tutti i segmenti:
x_down = x[y_growth_flips[0]:y_growth_flips[1]+1]
y_down = y[y_growth_flips[0]:y_growth_flips[1]+1]
x_up = x[y_growth_flips[1]:y_growth_flips[2]+1]
y_up = y[y_growth_flips[1]:y_growth_flips[2]+1]
def find_intersect(x_down, y_down, x_up, y_up):
for j in xrange(len(x_down)-1):
p0 = np.array([x_down[j], y_down[j]])
p1 = np.array([x_down[j+1], y_down[j+1]])
for k in xrange(len(x_up)-1):
q0 = np.array([x_up[k], y_up[k]])
q1 = np.array([x_up[k+1], y_up[k+1]])
params = np.linalg.solve(np.column_stack((p1-p0, q0-q1)),
q0-p0)
if np.all((params >= 0) & (params <= 1)):
return p0 + params[0]*(p1 - p0)
>>> find_intersect(x_down, y_down, x_up, y_up)
array([ 6.28302264, 1.63658676])
crossing_point = find_intersect(x_down, y_down, x_up, y_up)
plt.plot(crossing_point[0], crossing_point[1], 'ro')
plt.show()
![enter image description here](https://i.stack.imgur.com/Pdsq1.png)
Sul mio sistema, questo in grado di gestire circa 20 incroci al secondo, che non è superveloce, ma probabilmente sufficienti per analizzare i grafici di tanto in tanto. Si può essere in grado di spped le cose da vettorizzazione soluzione dei sistemi 2x2 lineari:
def find_intersect_vec(x_down, y_down, x_up, y_up):
p = np.column_stack((x_down, y_down))
q = np.column_stack((x_up, y_up))
p0, p1, q0, q1 = p[:-1], p[1:], q[:-1], q[1:]
rhs = q0 - p0[:, np.newaxis, :]
mat = np.empty((len(p0), len(q0), 2, 2))
mat[..., 0] = (p1 - p0)[:, np.newaxis]
mat[..., 1] = q0 - q1
mat_inv = -mat.copy()
mat_inv[..., 0, 0] = mat[..., 1, 1]
mat_inv[..., 1, 1] = mat[..., 0, 0]
det = mat[..., 0, 0] * mat[..., 1, 1] - mat[..., 0, 1] * mat[..., 1, 0]
mat_inv /= det[..., np.newaxis, np.newaxis]
import numpy.core.umath_tests as ut
params = ut.matrix_multiply(mat_inv, rhs[..., np.newaxis])
intersection = np.all((params >= 0) & (params <= 1), axis=(-1, -2))
p0_s = params[intersection, 0, :] * mat[intersection, :, 0]
return p0_s + p0[np.where(intersection)[0]]
Sì, è disordinato, ma funziona, e lo fa volte in modo X100 più veloce:
find_intersect(x_down, y_down, x_up, y_up)
Out[67]: array([ 6.28302264, 1.63658676])
find_intersect_vec(x_down, y_down, x_up, y_up)
Out[68]: array([[ 6.28302264, 1.63658676]])
%timeit find_intersect(x_down, y_down, x_up, y_up)
10 loops, best of 3: 66.1 ms per loop
%timeit find_intersect_vec(x_down, y_down, x_up, y_up)
1000 loops, best of 3: 375 us per loop
Nessuno dei tuoi link sta lavorando per me. – gggg
Mi chiedo come hai ottenuto l'effetto zoom-in con matplotlib –