Penso che ci siano 2 problemi principali.
segmento della struttura di vetro
trovare lo spessore del telaio segmentato
io ora postare un modo di segmentare gli occhiali della vostra immagine del campione. Forse questo metodo funzionerà anche per immagini diverse, ma probabilmente dovrai aggiustare i parametri, o potresti essere in grado di usare le idee principali.
L'idea principale è: Innanzitutto, trova il contorno più grande nell'immagine, che dovrebbe essere gli occhiali. In secondo luogo, trova i due più grandi contorni all'interno del precedente più grande contorno, che dovrebbero essere gli occhiali all'interno della cornice!
Io uso questa immagine come input (che dovrebbe essere la vostra immagine sfocata ma non dilatato):

// this functions finds the biggest X contours. Probably there are faster ways, but it should work...
std::vector<std::vector<cv::Point>> findBiggestContours(std::vector<std::vector<cv::Point>> contours, int amount)
{
std::vector<std::vector<cv::Point>> sortedContours;
if(amount <= 0) amount = contours.size();
if(amount > contours.size()) amount = contours.size();
for(int chosen = 0; chosen < amount;)
{
double biggestContourArea = 0;
int biggestContourID = -1;
for(unsigned int i=0; i<contours.size() && contours.size(); ++i)
{
double tmpArea = cv::contourArea(contours[i]);
if(tmpArea > biggestContourArea)
{
biggestContourArea = tmpArea;
biggestContourID = i;
}
}
if(biggestContourID >= 0)
{
//std::cout << "found area: " << biggestContourArea << std::endl;
// found biggest contour
// add contour to sorted contours vector:
sortedContours.push_back(contours[biggestContourID]);
chosen++;
// remove biggest contour from original vector:
contours[biggestContourID] = contours.back();
contours.pop_back();
}
else
{
// should never happen except for broken contours with size 0?!?
return sortedContours;
}
}
return sortedContours;
}
int main()
{
cv::Mat input = cv::imread("../Data/glass2.png", CV_LOAD_IMAGE_GRAYSCALE);
cv::Mat inputColors = cv::imread("../Data/glass2.png"); // used for displaying later
cv::imshow("input", input);
//edge detection
int lowThreshold = 100;
int ratio = 3;
int kernel_size = 3;
cv::Mat canny;
cv::Canny(input, canny, lowThreshold, lowThreshold*ratio, kernel_size);
cv::imshow("canny", canny);
// close gaps with "close operator"
cv::Mat mask = canny.clone();
cv::dilate(mask,mask,cv::Mat());
cv::dilate(mask,mask,cv::Mat());
cv::dilate(mask,mask,cv::Mat());
cv::erode(mask,mask,cv::Mat());
cv::erode(mask,mask,cv::Mat());
cv::erode(mask,mask,cv::Mat());
cv::imshow("closed mask",mask);
// extract outermost contour
std::vector<cv::Vec4i> hierarchy;
std::vector<std::vector<cv::Point>> contours;
//cv::findContours(mask, contours, hierarchy, CV_RETR_TREE, CV_CHAIN_APPROX_SIMPLE);
cv::findContours(mask, contours, hierarchy, CV_RETR_EXTERNAL, CV_CHAIN_APPROX_SIMPLE);
// find biggest contour which should be the outer contour of the frame
std::vector<std::vector<cv::Point>> biggestContour;
biggestContour = findBiggestContours(contours,1); // find the one biggest contour
if(biggestContour.size() < 1)
{
std::cout << "Error: no outer frame of glasses found" << std::endl;
return 1;
}
// draw contour on an empty image
cv::Mat outerFrame = cv::Mat::zeros(mask.rows, mask.cols, CV_8UC1);
cv::drawContours(outerFrame,biggestContour,0,cv::Scalar(255),-1);
cv::imshow("outer frame border", outerFrame);
// now find the glasses which should be the outer contours within the frame. therefore erode the outer border ;)
cv::Mat glassesMask = outerFrame.clone();
cv::erode(glassesMask,glassesMask, cv::Mat());
cv::imshow("eroded outer",glassesMask);
// after erosion if we dilate, it's an Open-Operator which can be used to clean the image.
cv::Mat cleanedOuter;
cv::dilate(glassesMask,cleanedOuter, cv::Mat());
cv::imshow("cleaned outer",cleanedOuter);
// use the outer frame mask as a mask for copying canny edges. The result should be the inner edges inside the frame only
cv::Mat glassesInner;
canny.copyTo(glassesInner, glassesMask);
// there is small gap in the contour which unfortunately cant be closed with a closing operator...
cv::dilate(glassesInner, glassesInner, cv::Mat());
//cv::erode(glassesInner, glassesInner, cv::Mat());
// this part was cheated... in fact we would like to erode directly after dilation to not modify the thickness but just close small gaps.
cv::imshow("innerCanny", glassesInner);
// extract contours from within the frame
std::vector<cv::Vec4i> hierarchyInner;
std::vector<std::vector<cv::Point>> contoursInner;
//cv::findContours(glassesInner, contoursInner, hierarchyInner, CV_RETR_TREE, CV_CHAIN_APPROX_SIMPLE);
cv::findContours(glassesInner, contoursInner, hierarchyInner, CV_RETR_EXTERNAL, CV_CHAIN_APPROX_SIMPLE);
// find the two biggest contours which should be the glasses within the frame
std::vector<std::vector<cv::Point>> biggestInnerContours;
biggestInnerContours = findBiggestContours(contoursInner,2); // find the one biggest contour
if(biggestInnerContours.size() < 1)
{
std::cout << "Error: no inner frames of glasses found" << std::endl;
return 1;
}
// draw the 2 biggest contours which should be the inner glasses
cv::Mat innerGlasses = cv::Mat::zeros(mask.rows, mask.cols, CV_8UC1);
for(unsigned int i=0; i<biggestInnerContours.size(); ++i)
cv::drawContours(innerGlasses,biggestInnerContours,i,cv::Scalar(255),-1);
cv::imshow("inner frame border", innerGlasses);
// since we dilated earlier and didnt erode quite afterwards, we have to erode here... this is a bit of cheating :-(
cv::erode(innerGlasses,innerGlasses,cv::Mat());
// remove the inner glasses from the frame mask
cv::Mat fullGlassesMask = cleanedOuter - innerGlasses;
cv::imshow("complete glasses mask", fullGlassesMask);
// color code the result to get an impression of segmentation quality
cv::Mat outputColors1 = inputColors.clone();
cv::Mat outputColors2 = inputColors.clone();
for(int y=0; y<fullGlassesMask.rows; ++y)
for(int x=0; x<fullGlassesMask.cols; ++x)
{
if(!fullGlassesMask.at<unsigned char>(y,x))
outputColors1.at<cv::Vec3b>(y,x)[1] = 255;
else
outputColors2.at<cv::Vec3b>(y,x)[1] = 255;
}
cv::imshow("output", outputColors1);
/*
cv::imwrite("../Data/Output/face_colored.png", outputColors1);
cv::imwrite("../Data/Output/glasses_colored.png", outputColors2);
cv::imwrite("../Data/Output/glasses_fullMask.png", fullGlassesMask);
*/
cv::waitKey(-1);
return 0;
}
ottengo questo risultato per la segmentazione:

la sovrapposizione nell'immagine originale ti darà un'impressione di qualità:

e inversa:

Ci sono alcune parti difficili nel codice e non è riordinato ancora. Spero sia comprensibile.
Il passo successivo sarebbe quello di calcolare lo spessore del telaio segmentato. Il mio suggerimento è di calcolare la trasformazione a distanza della maschera inversa. Da questo si vorrà calcolare un rilevamento di cresta o scheletrizzare la maschera per trovare la cresta. Successivamente utilizzare il valore mediano delle distanze della cresta.
In ogni modo spero che questo intervento può aiutare un po ', anche se non è ancora una soluzione.
Hai considerato la segmentazione? Con ogni mezzo necessario, separa i tuoi pixel in due gruppi: (1) gli occhiali appartenenti ai pixel (2) non appartenenti ai pixel degli occhiali. Usa la nozione di super pixel: ogni pixel dovrebbe avere varie caratteristiche: colore, posizione, se appartengono a qualsiasi contorno che hai già trovato, se sono sui bordi, ecc. – William
penso che i tuoi contorni siano buoni perché ci sono alcune lacune. Prova a dilatare i tuoi abili risultati prima dell'estrazione del contorno e verifica i contorni disegnandoli con una nuova immagine. Se i contorni vengono estratti correttamente, è possibile calcolare la trasformazione della distanza dal contorno pieno invertito. lo spessore del telaio potrebbe essere approssimato dalla distanza massima trovata * 2. – Micka
Ciao @William, grazie per la risposta! Ho pensato di eseguire il rilevamento della pelle e la segmentazione da lì. Inoltre ho esaminato il posizionamento probabile e simili. Non sono sicuro di come rilevare i pixel che appartengono a cosa, ma esamineremo il problema. – LKB