Considera la decomposizione del valore singolare M = USV *. Quindi la scomposizione dell'autovalore di M * M fornisce M * M = V (S * S) V * = VS * U * USV *. Vorrei verificare questa uguaglianza con NumPy mostrando che gli autovettori restituiti dalla eigh
funzione sono gli stessi di quelli restituiti da svd
funzione:Gli autovettori calcolati con numpy eigh e svd non corrispondono a
import numpy as np
np.random.seed(42)
# create mean centered data
A=np.random.randn(50,20)
M= A-np.array(A.mean(0),ndmin=2)
# svd
U1,S1,V1=np.linalg.svd(M)
S1=np.square(S1)
V1=V1.T
# eig
S2,V2=np.linalg.eigh(np.dot(M.T,M))
indx=np.argsort(S2)[::-1]
S2=S2[indx]
V2=V2[:,indx]
# both Vs are in orthonormal form
assert np.all(np.isclose(np.linalg.norm(V1,axis=1), np.ones(V1.shape[0])))
assert np.all(np.isclose(np.linalg.norm(V1,axis=0), np.ones(V1.shape[1])))
assert np.all(np.isclose(np.linalg.norm(V2,axis=1), np.ones(V2.shape[0])))
assert np.all(np.isclose(np.linalg.norm(V2,axis=0), np.ones(V2.shape[1])))
assert np.all(np.isclose(S1,S2))
assert np.all(np.isclose(V1,V2))
L'ultima asserzione fallisce. Perché?
È possibile aggiungere un numero positivo per tutti gli elementi diagonali, ovvero M2 = M + a * I, dove a è abbastanza grande da rendere M2 semidefinito positivo. Quindi SVD e Eigh dovrebbero essere più d'accordo. –