Ho utilizzato il pacchetto rgl
per creare un'animazione da un set di dati di movimento. Anche se non è un pacchetto creato appositamente per i dati dei gesti, puoi lavorarci.
Nell'esempio seguente, abbiamo dati di gesti per 8 punti sulla parte superiore del corpo: colonna vertebrale, centro della spalla, testa, spalla sinistra, polso sinistro, spalla destra e polso destro. Il soggetto ha le mani abbassate e il suo braccio destro sta facendo un movimento verso l'alto.
Ho limitato il set di dati a 6 osservazioni temporali (secondi, se lo farai), perché altrimenti sarebbe troppo grande per postare qui.
Ogni riga del set di dati originale corrisponde a un'osservazione temporale e le coordinate di ciascun punto del corpo sono definite in serie di 4 (ogni quattro colonne è un punto del corpo). Quindi ad ogni riga, abbiamo "x", "y", "z", "br" per la colonna vertebrale, quindi "x", "y", "z", "br" per il centro della spalla, e così via . Il "br" è sempre 1, al fine di separare le tre coordinate (x, y, z) di ogni parte del corpo.
Qui è l'originale (ristretto) di dati:
DATA.time.obs<-rbind(c(-0.06431,0.101546,2.990067,1,-0.091378,0.165703,3.029513,1,-0.090019,0.518603,3.022399,1,-0.042211,0.687271,2.987086,1,-0.231384,0.419869,2.953286,1,-0.299824,0.173991,2.882627,1,0.063367,0.399478,3.136306,1,0.134907,0.176191,3.159998,1),
c(-0.067185,0.102249,2.990185,1,-0.095083,0.166589,3.028688,1,-0.093098,0.519146,3.019775,1,-0.043808,0.687041,2.987671,1,-0.234622,0.417481,2.94581,1,-0.300324,0.169313,2.869782,1,0.056816,0.398384,3.135578,1,0.134536,0.180875,3.162843,1),
c(-0.069282,0.102964,2.989943,1,-0.098594,0.167465,3.027638,1,-0.097184,0.52169,3.019556,1,-0.046626,0.695406,2.989244,1,-0.23478,0.417057,2.943475,1,-0.300101,0.168628,2.860515,1,0.053793,0.395444,3.143226,1,0.134175,0.182816,3.172053,1),
c(-0.070924,0.102948,2.989369,1,-0.101156,0.167554,3.026474,1,-0.100244,0.522901,3.018919,1,-0.049834,0.696996,2.987933,1,-0.235301,0.416329,2.939331,1,-0.301339,0.170203,2.85497,1,0.04762,0.390872,3.142792,1,0.14041,0.186844,3.182172,1),
c(-0.071973,0.103372,2.988788,1,-0.103215,0.16776,3.025409,1,-0.102334,0.52281,3.019341,1,-0.051298,0.697003,2.991192,1,-0.235497,0.414859,2.935161,1,-0.297678,0.15788,2.833734,1,0.045973,0.386249,3.147609,1,0.14408,0.1916,3.204443,1),
c(-0.073223,0.104598,2.988132,1,-0.106597,0.168971,3.022554,1,-0.106778,0.522688,3.015138,1,-0.051867,0.697781,2.990767,1,-0.236137,0.414773,2.931317,1,-0.297552,0.153462,2.827027,1,0.039316,0.39146,3.166831,1,0.175061,0.214336,3.207459,1))
Per ciascun punto di tempo, si può creare una matrice in cui ogni riga sarà un punto del corpo, e le colonne sarà le coordinate:
# Single time point for analysis
time.point<-1
# Number of coordinates
coordinates<-4
# Number of body points
body.points<-dim(DATA.time.obs)[2]/coordinates
# Total time of gesture
total.time<-dim(DATA.time.obs)[1]
# Transform data for a single time. observation into a matrix
DATA.matrix<-matrix(DATA.time.obs[1,],c(body.points,coordinates),byrow = TRUE)
colnames(DATA.matrix)<-c("x","y","z","br")
rownames(DATA.matrix)<-c("hip_center","spine","shoulder_center","head",
"left_shoulder","left_wrist","right_shoulder",
"right_wrist")
Così, abbiamo, in ogni punto del tempo, una matrice come questo:
x y z br
hip_center -0.064310 0.101546 2.990067 1
spine -0.091378 0.165703 3.029513 1
shoulder_center -0.090019 0.518603 3.022399 1
head -0.042211 0.687271 2.987086 1
left_shoulder -0.231384 0.419869 2.953286 1
left_wrist -0.299824 0.173991 2.882627 1
right_shoulder 0.063367 0.399478 3.136306 1
right_wrist 0.134907 0.176191 3.159998 1
Ed ora abbiamo noi e rgl
per tracciare i dati da questa matrice:
#install.packages("rgl")
library(rgl)
# INITIAL PLOT
x<-unlist(DATA.matrix[,1])
y<-unlist(DATA.matrix[,2])
z<-unlist(DATA.matrix[,3])
# OPEN A BLANK 3D PLOT AND SET INITIAL NEUTRAL VIEWPOINT
open3d()
rgl.viewpoint(userMatrix=rotationMatrix(0,0,0,0))
# SET FIGURE POSITION
# This is variable. It will depend on your dataset
# I've found that for this specific dataset a rotation
# of -0.7*pi on the Y axis works
# You can also plot and select the best view with
# your mouse. This selected view will be passed on
# to the animation.
U <- par3d("userMatrix")
par3d(userMatrix = rotate3d(U, -0.7*pi, 0,1,0))
# PLOT POINTS
points3d(x=x,y=y,z=z,size=6,col="blue")
text3d(x=x,y=y,z=z,texts=1:8,adj=c(-0.1,1.5),cex=0.8)
# You can also plot each body point name.
# This might be helpful when you don't know the
# initial orientation of your plot
# text3d(x=x,y=y,z=z,texts=rownames(DATA.matrix),
# cex=0.6,adj=c(-0.1,1.5))
# Based on the plotted figure, connect the line segments
CONNECTOR<-c(1,2,2,3,3,4,3,5,3,7,5,6,7,8)
segments3d(x=x[CONNECTOR],y=y[CONNECTOR],z=z[CONNECTOR],col="red")
Poi, abbiamo questo:
per creare un'animazione, siamo in grado di mettere tutto questo in una funzione e l'uso lapply
.
movement.points<-function(DATA,time.point,CONNECTOR,body.points,coordinates){
DATA.time<-DATA[time.point,]
DATA.time<-matrix(DATA.time,c(body.points,coordinates),byrow = TRUE)
x<-unlist(DATA.time[,1])
y<-unlist(DATA.time[,2])
z<-unlist(DATA.time[,3])
# I used next3d instead of open3d because now I want R to plot
# several plots on top of our original, creating the animation
next3d(reuse=FALSE)
points3d(x=x,y=y,z=z,size=6,col="blue")
segments3d(x=c(x,x[CONNECTOR]),y=c(y,y[CONNECTOR]),z=c(z,z[CONNECTOR]),col="red")
# You can control the "velocity" of the animation by changing the
# parameter below. Smaller = faster
Sys.sleep(0.5)
}
So che questa soluzione non è elegante, ma funziona.
Tu non puoi mancare nulla. La mia soluzione di rito favo (u), 'library (sos); findFn ("{motion capture}") ', non ha trovato nulla di utile. Ci sono problemi culturali: potrebbe essere possibile fare cose interessanti con R, ma se tutti i ragazzi fantastici che lavorano su motion capture usano MATLAB o Python, allora è lì che le cose verranno fatte. Darei sicuramente un'occhiata e vedremo cosa è stato fatto in Python e nell'interfacciamento di Python con R per qualsiasi sollevamento statistico statico che non sia già implementato in R ... –
È possibile utilizzare i pacchetti "forecast" e "ftsa" per gli orari e analisi del componente principale. – power