Bene, recentemente sto usando anche Doc2Vec. E stavo pensando di usare il risultato LDA come vettore di parole e fissare quei vettori di parole per ottenere un vettore di documenti. Il risultato non è molto interessante però. Forse è solo il mio set di dati non è buono. Il codice è di sotto. Doc2Vec salva insieme vettori di parole e vettori di documenti nel dizionario doc2vecmodel.syn0. Puoi dirigere a cambiare i valori del vettore. L'unico problema potrebbe essere che è necessario scoprire quale posizione in syn0 rappresenta quale parola o documento. I vettori sono memorizzati in ordine casuale nel dizionario syn0.
import logging
logging.basicConfig(format='%(asctime)s : %(levelname)s : %(message)s', level=logging.INFO)
from gensim import corpora, models, similarities
import gensim
from sklearn import svm, metrics
import numpy
#Read in texts into div_texts(for LDA and Doc2Vec)
div_texts = []
f = open("clean_ad_nonad.txt")
lines = f.readlines()
f.close()
for line in lines:
div_texts.append(line.strip().split(" "))
#Set up dictionary and MMcorpus
dictionary = corpora.Dictionary(div_texts)
dictionary.save("ad_nonad_lda_deeplearning.dict")
#dictionary = corpora.Dictionary.load("ad_nonad_lda_deeplearning.dict")
print dictionary.token2id["junk"]
corpus = [dictionary.doc2bow(text) for text in div_texts]
corpora.MmCorpus.serialize("ad_nonad_lda_deeplearning.mm", corpus)
#LDA training
id2token = {}
token2id = dictionary.token2id
for onemap in dictionary.token2id:
id2token[token2id[onemap]] = onemap
#ldamodel = models.LdaModel(corpus, num_topics = 100, passes = 1000, id2word = id2token)
#ldamodel.save("ldamodel1000pass.lda")
#ldamodel = models.LdaModel(corpus, num_topics = 100, id2word = id2token)
ldamodel = models.LdaModel.load("ldamodel1000pass.lda")
ldatopics = ldamodel.show_topics(num_topics = 100, num_words = len(dictionary), formatted = False)
print ldatopics[10][1]
print ldatopics[10][1][1]
ldawordindex = {}
for i in range(len(dictionary)):
ldawordindex[ldatopics[0][i][1]] = i
#Doc2Vec initialize
sentences = []
for i in range(len(div_texts)):
string = "SENT_" + str(i)
sentence = models.doc2vec.LabeledSentence(div_texts[i], labels = [string])
sentences.append(sentence)
doc2vecmodel = models.Doc2Vec(sentences, size = 100, window = 5, min_count = 0, dm = 1)
print "Initial word vector for word junk:"
print doc2vecmodel["junk"]
#Replace the word vector with word vectors from LDA
print len(doc2vecmodel.syn0)
index2wordcollection = doc2vecmodel.index2word
print index2wordcollection
for i in range(len(doc2vecmodel.syn0)):
if index2wordcollection[i].startswith("SENT_"):
continue
wordindex = ldawordindex[index2wordcollection[i]]
wordvectorfromlda = [ldatopics[j][wordindex][0] for j in range(100)]
doc2vecmodel.syn0[i] = wordvectorfromlda
#print doc2vecmodel.index2word[26841]
#doc2vecmodel.syn0[0] = [0 for i in range(100)]
print "Changed word vector for word junk:"
print doc2vecmodel["junk"]
#Train Doc2Vec
doc2vecmodel.train_words = False
print "Initial doc vector for 1st document"
print doc2vecmodel["SENT_0"]
for i in range(50):
print "Round: " + str(i)
doc2vecmodel.train(sentences)
print "Trained doc vector for 1st document"
print doc2vecmodel["SENT_0"]
#Using SVM to do classification
resultlist = []
for i in range(4143):
string = "SENT_" + str(i)
resultlist.append(doc2vecmodel[string])
svm_x_train = []
for i in range(1000):
svm_x_train.append(resultlist[i])
for i in range(2210,3210):
svm_x_train.append(resultlist[i])
print len(svm_x_train)
svm_x_test = []
for i in range(1000,2210):
svm_x_test.append(resultlist[i])
for i in range(3210,4143):
svm_x_test.append(resultlist[i])
print len(svm_x_test)
svm_y_train = numpy.array([0 for i in range(2000)])
for i in range(1000,2000):
svm_y_train[i] = 1
print svm_y_train
svm_y_test = numpy.array([0 for i in range(2143)])
for i in range(1210,2143):
svm_y_test[i] = 1
print svm_y_test
svc = svm.SVC(kernel='linear')
svc.fit(svm_x_train, svm_y_train)
expected = svm_y_test
predicted = svc.predict(svm_x_test)
print("Classification report for classifier %s:\n%s\n"
% (svc, metrics.classification_report(expected, predicted)))
print("Confusion matrix:\n%s" % metrics.confusion_matrix(expected, predicted))
print doc2vecmodel["junk"]
fonte
2014-12-30 05:03:49
Grazie Aaron .. Effettivamente domanda tempestiva :) Questo è scritto nel tutorial: "... se vuoi solo imparare le rappresentazioni per le etichette e lasciare le rappresentazioni di parole fisse, il modello ha anche la bandiera train_words = False" .. So che è possibile utilizzare vettori pre-formati per word2vec. La domanda è: come posso chiamare doc2vec con quei vettori pre-addestrati? – Stergios
@Stergios: Forse sto fraintendendo la domanda (e sto ancora inciampando in questo io stesso). Ma sembra che l'inferenza non sia ancora implementata - vedi https://groups.google.com/forum/#!topic/gensim/EFy1f0QwkKI. Per fortuna, ci sono almeno un paio di persone che ci lavorano attivamente. Immagino che la sequenza sarà simile a 1) Caricare vettori pre-addestrati; 2) Crea un vettore per la tua frase non vista con una nuova etichetta; 3) Chiama most_similar ("NEW_LABEL"). In alternativa, crea i vettori per più frasi invisibili e calcola le distanze tra quei vettori. Ma questa è solo una supposizione. – AaronD
@AaronD FYI, l'inferenza funziona ora – Renaud