Ho implementato cubetti in marcia, cubi a doppia marcia e cubetti di marchingegno adattivi in C#, solo per scoprire che per i miei scopi ho bisogno di un doppio contorno. Ho letto tutti i lavori sul dual contouring e ottengo tutto tranne il nucleo del dual contouring stesso: minimizzando la funzione di errore quadratico (QEF).Funzione di doppio errore di contornitura e quadratica
In questo momento, sto calcolando la posizione dei vertici interni del voxel semplicemente trovando la media tra tutti i edgePoints che condividono quel singolo vertice (da 3 a 6 spigoli) e funziona bene, ma ovviamente non crea i vertici interni nel posti giusti
Ecco il codice che sto cercando di creare. Qualsiasi aiuto sarebbe molto apprezzato
/// <summary>
/// ORIGINAL WORK: Dual Contouring of Hermite Data by Tao Ju (remember me of a MechCommander 2 character)
/// 2.3 Representing and minimizing QEFs
/// The function E[x] can be expressed as the inner
/// product (Ax-b)T (Ax-b) where A is a matrix whose rows are the
/// normals ni and b is a vector whose entries are ni*pi. <------------ (dot product?)>
/// Typically, the quadratic function E[x] is expanded into the form
/// E[x] = xT AT Ax - 2xT AT b + bT b (2)
/// where the matrix AT A is a symmetric 3x3 matrix, AT b is a column
/// vector of length three and bT b is a scalar. The advantage of this expansion
/// is that only the matrices AT A, AT b and bT b need be stored
/// (10 floats), as opposed to storing the matrices A and b. Furthermore,
/// a minimizing value ˆ x for E[x] can be computed by solving
/// the normal equations AT Aˆ x = AT b.
/// </summary>
public Vector3 GetMinimumError(Vector3 p0, Vector3 p1, Vector3 p2, Vector3 n0, Vector3 n1, Vector3 n2)
{
//so, here we are. I'm creating a vector to store the final value.
Vector3 position = Vector3.Zero;
//Values of b are supposed to b (:P) three floats. The only way i know to find a float value
//by multiplying 2 vectors is to use dot product.
Vector3 b = new Vector3(
Vector3.Dot(p0, n0),
Vector3.Dot(p1, n1),
Vector3.Dot(p2, n2));
//What the transpose of a vector is supposed to be?
//I don't know, but i think should be the vector itself :)
float bTb = Vector3.Dot(b, b);
//i create a square matrix 3x3, so i can use c# matrix transformation libraries.
//i know i will probably have to build bigger matrix later on, but it should fit for now
Matrix A = new Matrix(
n0.X, n0.Y, n0.Z, 0,
n1.X, n1.Y, n1.Z, 0,
n2.X, n2.Y, n2.Z, 0,
0, 0, 0, 0);
//easy
Matrix AT = Matrix.Transpose(A);
//EASY
Matrix ATA = Matrix.Multiply(AT, A);
//Another intuition. Hope makes sense...
Vector3 ATb = Vector3.Transform(b, AT);
//...
// some cool stuff about solving
// the normal equations AT Aˆ x = AT b
//...
return position; //profit!
}