Sto cercando di utilizzare la scintilla per un semplice compito di apprendimento automatico. Ho usato pyspark e spark 1.2.0 per fare un semplice problema di regressione logistica. Ho 1,2 milioni di record per la formazione e ho cancellato le funzionalità dei record. Quando ho impostato il numero di funzioni hash come 1024, il programma funziona bene, ma quando ho impostato il numero di funzioni hash come 16384, il programma non riesce più volte con il seguente errore:Errore Spark Java: la dimensione supera Integer.MAX_VALUE
Py4JJavaError: An error occurred while calling o84.trainLogisticRegressionModelWithSGD.
: org.apache.spark.SparkException: Job aborted due to stage failure: Task 1 in stage 4.0 failed 4 times, most recent failure: Lost task 1.3 in stage 4.0 (TID 9, workernode0.sparkexperience4a7.d5.internal.cloudapp.net): java.lang.RuntimeException: java.lang.IllegalArgumentException: Size exceeds Integer.MAX_VALUE
at sun.nio.ch.FileChannelImpl.map(FileChannelImpl.java:828)
at org.apache.spark.storage.DiskStore.getBytes(DiskStore.scala:123)
at org.apache.spark.storage.DiskStore.getBytes(DiskStore.scala:132)
at org.apache.spark.storage.BlockManager.doGetLocal(BlockManager.scala:517)
at org.apache.spark.storage.BlockManager.getBlockData(BlockManager.scala:307)
at org.apache.spark.network.netty.NettyBlockRpcServer$$anonfun$2.apply(NettyBlockRpcServer.scala:57)
at org.apache.spark.network.netty.NettyBlockRpcServer$$anonfun$2.apply(NettyBlockRpcServer.scala:57)
at scala.collection.TraversableLike$$anonfun$map$1.apply(TraversableLike.scala:244)
at scala.collection.TraversableLike$$anonfun$map$1.apply(TraversableLike.scala:244)
at scala.collection.IndexedSeqOptimized$class.foreach(IndexedSeqOptimized.scala:33)
at scala.collection.mutable.ArrayOps$ofRef.foreach(ArrayOps.scala:108)
at scala.collection.TraversableLike$class.map(TraversableLike.scala:244)
at scala.collection.mutable.ArrayOps$ofRef.map(ArrayOps.scala:108)
at org.apache.spark.network.netty.NettyBlockRpcServer.receive(NettyBlockRpcServer.scala:57)
at org.apache.spark.network.server.TransportRequestHandler.processRpcRequest(TransportRequestHandler.java:124)
at org.apache.spark.network.server.TransportRequestHandler.handle(TransportRequestHandler.java:97)
at org.apache.spark.network.server.TransportChannelHandler.channelRead0(TransportChannelHandler.java:91)
at org.apache.spark.network.server.TransportChannelHandler.channelRead0(TransportChannelHandler.java:44)
at io.netty.channel.SimpleChannelInboundHandler.channelRead(SimpleChannelInboundHandler.java:105)
at io.netty.channel.AbstractChannelHandlerContext.invokeChannelRead(AbstractChannelHandlerContext.java:333)
at io.netty.channel.AbstractChannelHandlerContext.fireChannelRead(AbstractChannelHandlerContext.java:319)
at io.netty.handler.codec.MessageToMessageDecoder.channelRead(MessageToMessageDecoder.java:103)
at io.netty.channel.AbstractChannelHandlerContext.invokeChannelRead(AbstractChannelHandlerContext.java:333)
at io.netty.channel.AbstractChannelHandlerContext.fireChannelRead(AbstractChannelHandlerContext.java:319)
at io.netty.handler.codec.ByteToMessageDecoder.channelRead(ByteToMessageDecoder.java:163)
at io.netty.channel.AbstractChannelHandlerContext.invokeChannelRead(AbstractChannelHandlerContext.java:333)
at io.netty.channel.AbstractChannelHandlerContext.fireChannelRead(AbstractChannelHandlerContext.java:319)
at io.netty.channel.DefaultChannelPipeline.fireChannelRead(DefaultChannelPipeline.java:787)
at io.netty.channel.nio.AbstractNioByteChannel$NioByteUnsafe.read(AbstractNioByteChannel.java:130)
at io.netty.channel.nio.NioEventLoop.processSelectedKey(NioEventLoop.java:511)
at io.netty.channel.nio.NioEventLoop.processSelectedKeysOptimized(NioEventLoop.java:468)
at io.netty.channel.nio.NioEventLoop.processSelectedKeys(NioEventLoop.java:382)
at io.netty.channel.nio.NioEventLoop.run(NioEventLoop.java:354)
at io.netty.util.concurrent.SingleThreadEventExecutor$2.run(SingleThreadEventExecutor.java:116)
at java.lang.Thread.run(Thread.java:745)
at org.apache.spark.network.client.TransportResponseHandler.handle(TransportResponseHandler.java:156)
at org.apache.spark.network.server.TransportChannelHandler.channelRead0(TransportChannelHandler.java:93)
at org.apache.spark.network.server.TransportChannelHandler.channelRead0(TransportChannelHandler.java:44)
at io.netty.channel.SimpleChannelInboundHandler.channelRead(SimpleChannelInboundHandler.java:105)
at io.netty.channel.AbstractChannelHandlerContext.invokeChannelRead(AbstractChannelHandlerContext.java:333)
at io.netty.channel.AbstractChannelHandlerContext.fireChannelRead(AbstractChannelHandlerContext.java:319)
at io.netty.handler.codec.MessageToMessageDecoder.channelRead(MessageToMessageDecoder.java:103)
at io.netty.channel.AbstractChannelHandlerContext.invokeChannelRead(AbstractChannelHandlerContext.java:333)
at io.netty.channel.AbstractChannelHandlerContext.fireChannelRead(AbstractChannelHandlerContext.java:319)
at io.netty.handler.codec.ByteToMessageDecoder.channelRead(ByteToMessageDecoder.java:163)
at io.netty.channel.AbstractChannelHandlerContext.invokeChannelRead(AbstractChannelHandlerContext.java:333)
at io.netty.channel.AbstractChannelHandlerContext.fireChannelRead(AbstractChannelHandlerContext.java:319)
at io.netty.channel.DefaultChannelPipeline.fireChannelRead(DefaultChannelPipeline.java:787)
at io.netty.channel.nio.AbstractNioByteChannel$NioByteUnsafe.read(AbstractNioByteChannel.java:130)
at io.netty.channel.nio.NioEventLoop.processSelectedKey(NioEventLoop.java:511)
at io.netty.channel.nio.NioEventLoop.processSelectedKeysOptimized(NioEventLoop.java:468)
at io.netty.channel.nio.NioEventLoop.processSelectedKeys(NioEventLoop.java:382)
at io.netty.channel.nio.NioEventLoop.run(NioEventLoop.java:354)
at io.netty.util.concurrent.SingleThreadEventExecutor$2.run(SingleThreadEventExecutor.java:116)
at java.lang.Thread.run(Thread.java:745)
Driver stacktrace:
at org.apache.spark.scheduler.DAGScheduler.org$apache$spark$scheduler$DAGScheduler$$failJobAndIndependentStages(DAGScheduler.scala:1214)
at org.apache.spark.scheduler.DAGScheduler$$anonfun$abortStage$1.apply(DAGScheduler.scala:1203)
at org.apache.spark.scheduler.DAGScheduler$$anonfun$abortStage$1.apply(DAGScheduler.scala:1202)
at scala.collection.mutable.ResizableArray$class.foreach(ResizableArray.scala:59)
at scala.collection.mutable.ArrayBuffer.foreach(ArrayBuffer.scala:47)
at org.apache.spark.scheduler.DAGScheduler.abortStage(DAGScheduler.scala:1202)
at org.apache.spark.scheduler.DAGScheduler$$anonfun$handleTaskSetFailed$1.apply(DAGScheduler.scala:696)
at org.apache.spark.scheduler.DAGScheduler$$anonfun$handleTaskSetFailed$1.apply(DAGScheduler.scala:696)
at scala.Option.foreach(Option.scala:236)
at org.apache.spark.scheduler.DAGScheduler.handleTaskSetFailed(DAGScheduler.scala:696)
at org.apache.spark.scheduler.DAGSchedulerEventProcessActor$$anonfun$receive$2.applyOrElse(DAGScheduler.scala:1420)
at akka.actor.Actor$class.aroundReceive(Actor.scala:465)
at org.apache.spark.scheduler.DAGSchedulerEventProcessActor.aroundReceive(DAGScheduler.scala:1375)
at akka.actor.ActorCell.receiveMessage(ActorCell.scala:516)
at akka.actor.ActorCell.invoke(ActorCell.scala:487)
at akka.dispatch.Mailbox.processMailbox(Mailbox.scala:238)
at akka.dispatch.Mailbox.run(Mailbox.scala:220)
at akka.dispatch.ForkJoinExecutorConfigurator$AkkaForkJoinTask.exec(AbstractDispatcher.scala:393)
at scala.concurrent.forkjoin.ForkJoinTask.doExec(ForkJoinTask.java:260)
at scala.concurrent.forkjoin.ForkJoinPool$WorkQueue.runTask(ForkJoinPool.java:1339)
at scala.concurrent.forkjoin.ForkJoinPool.runWorker(ForkJoinPool.java:1979)
at scala.concurrent.forkjoin.ForkJoinWorkerThread.run(ForkJoinWorkerThread.java:107)
Questo errore si verifica quando Formazione del LogisticRegressionWithSGD dopo aver trasferito i dati in LabeledPoint.
Qualcuno ha un'idea in merito?
Il mio codice è il seguente (sto usando un notebook IPython per questo):
from pyspark.mllib.regression import LabeledPoint
from pyspark.mllib.classification import LogisticRegressionWithSGD
from numpy import array
from sklearn.feature_extraction import FeatureHasher
from pyspark import SparkContext
sf = SparkConf().setAppName("test").set("spark.executor.memory", "50g").set("spark.cores.max", 30)
sc = SparkContext(conf=sf)
training_file = sc.textFile("train_small.txt")
def hash_feature(line):
values = [0, dict()]
for index, x in enumerate(line.strip("\n").split('\t')):
if index == 0:
values[0] = float(x)
else:
values[1][str(index)+"_"+x] = 1
return values
n_feature = 2**14
hasher = FeatureHasher(n_features=n_feature)
training_file_hashed = training_file.map(lambda line: [hash_feature(line)[0], hasher.transform([hash_feature(line)[1]])])
def build_lable_points(line):
values = [0.0] * n_feature
for index, value in zip(line[1].indices, line[1].data):
values[index] = value
return LabeledPoint(line[0], values)
parsed_training_data = training_file_hashed.map(lambda line: build_lable_points(line))
model = LogisticRegressionWithSGD.train(parsed_training_data)
L'errore si verifica durante l'esecuzione l'ultima riga.
Puoi mostrare il tuo codice? –
il codice viene aggiunto al post originale, grazie – peng
Puoi provare più partizioni? (Penso che più partizioni significano meno dati per partizione, quindi dovrebbe fare il trucco). –