Questo potrebbe essere eccessivo e si basa sul tuo commento
Entrambe le curve teoriche ed i punti dati sono array di diversa lunghezza.
vorrei fare quanto segue:
- troncare i set di dati in modo che i suoi valori x si trovano all'interno del valori massimi e minimi del set teorico.
- Interpolare la curva teorica utilizzando
scipy.interpolate.interp1d
e i valori x dei dati troncati di cui sopra. Il motivo del passaggio (1) è quello di soddisfare i vincoli di interp1d
.
- Utilizzare
numpy.where
per trovare i valori di dati y che sono fuori dal campo di valori teorici accettabili.
- NON rimuovere questi valori, come suggerito nei commenti e altre risposte. Se vuoi chiarezza, indicali tracciando il colore di un "inliner" e i "valori anomali" di un altro colore.
Ecco uno script che è vicino a quello che stai cercando, penso. E speriamo che vi aiuterà a realizzare ciò che si vuole:
import numpy as np
import scipy.interpolate as interpolate
import matplotlib.pyplot as plt
# make up data
def makeUpData():
'''Make many more data points (x,y,yerr) than theory (x,y),
with theory yerr corresponding to a constant "sigma" in y,
about x,y value'''
NX= 150
dataX = (np.random.rand(NX)*1.1)**2
dataY = (1.5*dataX+np.random.rand(NX)**2)*dataX
dataErr = np.random.rand(NX)*dataX*1.3
theoryX = np.arange(0,1,0.1)
theoryY = theoryX*theoryX*1.5
theoryErr = 0.5
return dataX,dataY,dataErr,theoryX,theoryY,theoryErr
def makeSameXrange(theoryX,dataX,dataY):
'''
Truncate the dataX and dataY ranges so that dataX min and max are with in
the max and min of theoryX.
'''
minT,maxT = theoryX.min(),theoryX.max()
goodIdxMax = np.where(dataX<maxT)
goodIdxMin = np.where(dataX[goodIdxMax]>minT)
return (dataX[goodIdxMax])[goodIdxMin],(dataY[goodIdxMax])[goodIdxMin]
# take 'theory' and get values at every 'data' x point
def theoryYatDataX(theoryX,theoryY,dataX):
'''For every dataX point, find interpolated thoeryY value. theoryx needed
for interpolation.'''
f = interpolate.interp1d(theoryX,theoryY)
return f(dataX[np.where(dataX<np.max(theoryX))])
# collect valid points
def findInlierSet(dataX,dataY,interpTheoryY,thoeryErr):
'''Find where theoryY-theoryErr < dataY theoryY+theoryErr and return
valid indicies.'''
withinUpper = np.where(dataY<(interpTheoryY+theoryErr))
withinLower = np.where(dataY[withinUpper]
>(interpTheoryY[withinUpper]-theoryErr))
return (dataX[withinUpper])[withinLower],(dataY[withinUpper])[withinLower]
def findOutlierSet(dataX,dataY,interpTheoryY,thoeryErr):
'''Find where theoryY-theoryErr < dataY theoryY+theoryErr and return
valid indicies.'''
withinUpper = np.where(dataY>(interpTheoryY+theoryErr))
withinLower = np.where(dataY<(interpTheoryY-theoryErr))
return (dataX[withinUpper],dataY[withinUpper],
dataX[withinLower],dataY[withinLower])
if __name__ == "__main__":
dataX,dataY,dataErr,theoryX,theoryY,theoryErr = makeUpData()
TruncDataX,TruncDataY = makeSameXrange(theoryX,dataX,dataY)
interpTheoryY = theoryYatDataX(theoryX,theoryY,TruncDataX)
inDataX,inDataY = findInlierSet(TruncDataX,TruncDataY,interpTheoryY,
theoryErr)
outUpX,outUpY,outDownX,outDownY = findOutlierSet(TruncDataX,
TruncDataY,
interpTheoryY,
theoryErr)
#print inlierIndex
fig = plt.figure()
ax = fig.add_subplot(211)
ax.errorbar(dataX,dataY,dataErr,fmt='.',color='k')
ax.plot(theoryX,theoryY,'r-')
ax.plot(theoryX,theoryY+theoryErr,'r--')
ax.plot(theoryX,theoryY-theoryErr,'r--')
ax.set_xlim(0,1.4)
ax.set_ylim(-.5,3)
ax = fig.add_subplot(212)
ax.plot(inDataX,inDataY,'ko')
ax.plot(outUpX,outUpY,'bo')
ax.plot(outDownX,outDownY,'ro')
ax.plot(theoryX,theoryY,'r-')
ax.plot(theoryX,theoryY+theoryErr,'r--')
ax.plot(theoryX,theoryY-theoryErr,'r--')
ax.set_xlim(0,1.4)
ax.set_ylim(-.5,3)
fig.savefig('findInliers.png')
Questa cifra è il risultato:
Solo da un punto di vista scientifico, non rimuoverei i punti a meno che non vi sia una ragione ESTREMAMENTE valida che pensi che siano sbagliati. Hai abbastanza dati che i punti periferici non avranno alcun effetto sull'adattamento, quindi rimuoverli serve solo a far apparire il grafico bello, senza servire a scopi scientifici. – NickLH
Hai ragione, ma mi è stato detto di farlo. –