È possibile utilizzare scipy.optimize.curve_fit
per adattarsi a qualsiasi funzione desiderata (entro limiti ragionevoli) ai dati. La firma di questa funzione è
curve_fit(f, xdata, ydata, p0=None, sigma=None, **kw)
e utilizza minimi quadrati non lineari sagomata per adattarsi a una funzione f
ai dati ydata(xdata)
. Nel tuo caso vorrei provare qualcosa di simile:
import numpy
from scipy.optimize import curve_fit
import matplotlib.pyplot as plt
def _polynomial(x, *p):
"""Polynomial fitting function of arbitrary degree."""
poly = 0.
for i, n in enumerate(p):
poly += n * x**i
return poly
# Define some test data:
x = numpy.linspace(0., numpy.pi)
y = numpy.cos(x) + 0.05 * numpy.random.normal(size=len(x))
# p0 is the initial guess for the fitting coefficients, set the length
# of this to be the order of the polynomial you want to fit. Here I
# have set all the initial guesses to 1., you may have a better idea of
# what values to expect based on your data.
p0 = numpy.ones(6,)
coeff, var_matrix = curve_fit(_polynomial, x, y, p0=p0)
yfit = [_polynomial(xx, *tuple(coeff)) for xx in x] # I'm sure there is a better
# way of doing this
plt.plot(x, y, label='Test data')
plt.plot(x, yfit, label='fitted data')
plt.show()
che dovrebbe dare qualcosa di simile:
Non posso credere di non averlo pensato prima! Grazie :) – prrao
+1 Non posso credere di aver scritto un esempio inutilmente complicato piuttosto che ricordare la routine 'polyfit'! – Chris